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The RNA viruses cowpea chlorotic mottle, satellite tobacco mosaic, pariacoto

and MS2, already considered in part IV of this series of papers [Janner, A.

(2011a), Acta Cryst. A67, 517–520], are investigated further, with the aim to

arrive at a possible physical basis for their structural properties. The shell

structure of the filled capsid is analyzed in terms of successive spherical

boundaries of the sets of icosahedral equivalent chains. By inversion in the

sphere enclosing the capsid, the internal boundaries are transformed into

external ones, which are more easily visualized. This graphical procedure reveals

the presence of regularly spaced shells with boundaries fitting with anti-nodal

surfaces of the virus considered as an elastic resonator. The centers of gravity of

the various chains occur in the nodal regions of eigenvibrations with wavelength

� = R0 /K0, where R0 is the radius of the virus and K0 takes one of the values

12, 6, 4, 3, depending on the mode. The resonator model is consistent with

practically all spherical shell boundaries, whereas deviations are observed for

the icosahedral axial modes, which apparently play a secondary role with respect

to the spherical ones. Both the spherical and the axial anti-nodal surfaces fit very

well with the packed structure of the viruses in the crystal which, accordingly, is

expected to have eigenfrequencies related to those of the virus. These results

open the way to a better understanding of the possibility of breaking the capsid

using resonant forced oscillations excited, for example, by an applied elastic

shock or by irradiation with femtosecond laser pulses, as already realised by

K.-T. Tsen and co-workers. An alternative ‘plywood’ model connected to the

extreme elastic properties of the capsid is also considered.

1. Introduction

The pariacoto virus [refcode 1f8v of the Brookhaven Protein

Data Bank (PDB), with primary reference Tang et al. (2001)],

the satellite tobacco mosaic virus/RNA complex (PDB

refcode 1a34; Larson et al., 1998), the native cowpea chlorotic

mottle virus (PDB refcode 1cwp; Speir et al., 1995) and the

RNA MS2 bacteriophage (PDB refcode 1zdh; Valegård et al.,

1997), already considered in part IV (Janner, 2011a), are

investigated further in an attempt to connect the geometry of

their structure with physical properties. The interest in these

viruses has been stimulated by the work of Twarock and Keef

of the York Center for Complex System Analysis, York, and

by that of Stockley, Astbury Center for Structural Molecular

Biology, Leeds (Jonoska & Twarock, 2006; Toropova et al.,

2008; Keef & Twarock, 2009a,b; Grayson et al., 2009; Stockley

& Twarock, 2009; Keef et al., 2011).

As verified in part IV, these four viruses have the

same generic structural properties of several other viruses,

like crystallographic scaling, indexed forms enclosing axial-

symmetric clusters of chains, and a crystal packing which

reflects features of the individual virus. Moreover, these

phenomenological laws, derived by the author in previous

publications devoted to axial-symmetric biomacromolecules

and extended to icosahedral viruses, apply equally well to the

various ordered components of the capsid and of the genome.

Here the enclosing forms of capsid and genome are

considered in the spherical symmetry approximation instead

of in terms of indexed icosahedral forms. In a similar way, the

axial-symmetric cases are handled by corresponding cylind-

rical forms. The combination of external and internal bound-

aries of these forms leads to spherical and cylindrical

shells.

In publications of other authors, spherical shells have been

considered in connection with the extreme elastic properties

of the capsid which lead to conformal changes, like buckling

and swelling transitions in viral maturation [see, for example,

Tama & Brooks, 2005; Jonoska & Twarock, 2006; Klug et al.,

2006; Guérin & Bruinsma, 2007; Bünemann, 2008, and refer-

ences therein].

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sh5135&bbid=BB39


For the two-dimensional figure visualization a projection

from the three-dimensional structure has been adopted. This

has the drawback of hiding the boundaries of the internal

spherical shells. Therefore, in x2, the internal shell boundaries

of the various chain polymers are visualized by applying a

sphere inversion transformation (Coxeter, 1961), which turns

the virus inside out. The striking result is that the shell

boundaries occur at the surface of equally spaced spheres.

One then verifies in x3 that this spacing fits with the crystal

packing of the virus, in a way consistent with the packing

lattice �P, introduced in part I (Janner, 2010a) and discussed

further in part III (Janner, 2011b). We recall that the packing

lattice �P is a three-dimensional lattice invariant with respect

to the space group of the crystal as packing of equal spheres,

which has the crystal lattice � as a sublattice. Moreover, the

centers of the spheres and their kissing points (where the

spheres touch) are points of �P. This correspondence supports

the view, already pointed out in part II for the serotypes of the

rhinovirus (Janner, 2010b), that there is an intimate connec-

tion between the detailed structure of a single virus and the

space-group symmetry of its crystal.

The existence of enclosing forms of axial-symmetric clusters

of monomers with vertices at (projected) points of a lattice

with the same point group symmetry (the form lattice �F)

suggests considering cylindrical shells around the two-fold,

three-fold and five-fold icosahedral axes, as carried out in x4.

Again the observed shell boundaries are at equally spaced

cylinders, oriented along the symmetry axis, having the same

inter-space distance as in the set of spherical shells. The

situation recalls the diagrammatic representation of the

packing forms found in the light harvesting protein LH2 and

in the rhodopsin retinal complex [see Figs. 14 and 15 of Janner

(2010a)].

In x5 an attempt is made to arrive at a possible physical

interpretation of the shell boundaries as anti-nodal surfaces of

viral eigenvibrations. Considered is the possibility of viral

destruction by means of resonant forced oscillations. Some

final remarks conclude the paper. The way the results have

been obtained is commented on from a general point of view

in Appendix A.

2. Spherical viral shells

2.1. General aspects

Inversion in a sphere with center O and radius R0 trans-

forms any point P (not equal to O) in the inverted point P 0 on

the ray OP with distance OP 0 from O satisfying the relation

OP�OP 0 ¼ R2
0; ð1Þ

where OP and OP 0 are position vectors along the same ray.

This inversion transforms spheres into spheres, conserves the

point group symmetry and leaves invariant the sphere of

radius R0, denoted as the invariant sphere (Coxeter, 1961).

The center of the inversion transformations considered is

the center of the virus. In the inverted viral structure the

atomic positions inside the invariant sphere are mapped to

outside points, and conversely. Note that the inverted struc-

ture depends on R0.

An optimal choice of R0 should lead to simple relations

between R0 and the various shell boundaries taking into

account the three symmetry groups involved: the rotation

group SOð3Þ, the icosahedral point group 235 and the space

group of the crystal.

This is indeed the case if one chooses the external spherical

boundary of the capsid (with radius Re) as the invariant sphere

(R0 = Re), not necessarily the one with maximal radius, but

possibly one excluding protruding elements, like external

loops and/or terminal chain segments. The radius of the sphere

enclosing these (external) protruding elements is denoted

as Rpe.

In a similar way, one distinguishes between an internal

boundary of the capsid, with radius Ri, and the boundary of

the internal protruding elements (directed towards the

center), with radius Rpi for each of the icosahedral chain

subsystems. Thus for each of the protein chains involved (say

A), one has main external and internal shell boundaries ReðAÞ,

RiðAÞ and possibly protruding ones RpeðAÞ and RpiðAÞ,

respectively. The same approach is applied to the RNA chains,

where of course protruding shells do not occur.

2.2. Observed shell boundaries

Applying to the four viruses listed in the Introduction the

inversion in a sphere as a graphical tool for the visualization of

the internal boundaries of a given external spherical one, one

arrives at the amazing general result:

For any of the ordered chains of the capsid and of the

genome of these four viruses, whose coordinates are listed in

the structural data of the PDB files, the shell boundaries (main

and/or protruded) occur at the surface of spheres with radius

R satisfying the condition

R ¼ k R0=K0; ð2Þ

where R0 is the radius of the chosen invariant inversion

sphere, k is an integer and K0 = 12. The numerical value 12 is

an empirical unexpected result. Accordingly, the possible

spherical shell boundaries are equidistant, with an inter-

sphere distance d given by

d ¼ R0=12; ð3Þ

so that their radius, expressed in units of d, takes the value of

the integer k. Moreover, the k value of the external boundary

of the genome is equal to that of the main internal boundary of

the capsid, whereas the internal protruding shell of the same

capsid interacts directly with the genome. This justifies the

distinction made between main and protruded boundaries.

Of course, as always, the experimental value of a given

radius is an approximation of the ideal one. The graphical

representation of the structure together with the shell

boundaries involved allows a visual estimation of the differ-

ence between real and ideal.

Table 1 indicates for each of the four viruses the value of the

radius R0 and the type, label and length of the chains which

build the shells. In all cases the invariant sphere has the same
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radius as the (main) external boundary of the capsid which, in

the present case and in units of d, is given by R0 = Re = 12. The

radii of the other shell boundaries are then deduced from plots

of the direct and inverse chain structures. The result is

summarized in Table 2. Corresponding figures, supplemented

by a short comment, are indicated for each of the viruses

considered.

Cowpea chlorotic mottle virus. The boundaries of the three

coat proteins A;B;C are practically the same so that they

form a single shell with negligible protruding elements (Fig. 1,

left-hand side). The ordered segments D;E;F of the RNA

chains also form a single shell (Fig. 1, right-hand side).

Actually, E is so short that it can be neglected.

Satellite tobacco mosaic virus. Loops and chain terminals of

the coat protein A which protrude the internal (main)

boundary of the capsid form their own shell with unit width d

(Fig. 2, left-hand side). The internal boundary of the RNA

shell has a slightly larger radius than the ideal one given by k =

6, i.e. 43.7 Å instead of 42.7 Å (Fig. 2, right-hand side).

In this virus one finds the intriguing single case of SO2�
4 ions

at positions which, when transformed by inversion in the

sphere inscribed in the enclosing viral form, coincide with the

icosahedral vertices of the external ico-dodecahedron (not

shown).

Bacteriophage MS2. While the three coat proteins A;B;C

form a single shell delimited by ReðA;B;CÞ = 12 and

RiðA;B;CÞ = 10 (in units of d), with negligible protruding

elements, only the external RNA boundary is the same for the

two chains R; S. The internal boundary of these chains differs

by one unit: RiðRÞ = 8 and RiðSÞ = 9 (Fig. 3).

Pariacoto virus. As already pointed out, the RNA duplex is

wrapped around a dodecahedron scaled by a factor 1=� with

respect to the ico-dodecahedron enclosing the capsid. Despite

this special symmetry relation, its shell obeys the same general

laws as in the other viruses. In the present case one has ReðRÞ

= 9 and RiðRÞ = 7 (Fig. 4, right-hand side). The shell structure

of the six different capsid proteins (A;B;C;D;E;F) is fairly

rich with external and internal main and protruded bound-

aries. For A;B;C, the so-called � proteins, the boundaries are

practically at ideal positions (Fig. 4, left-hand side). Those of

the � proteins D;E;F show small deviations from the ideal

Acta Cryst. (2011). A67, 521–532 A. Janner � Form, symmetry and packing of biomacromolecules. V 523

research papers

Table 1
Molecular description.

The length gives the number of backbone positions determined.

PDB RNA virus
Radius
R0 (Å) Chains Type Length

1cwp Cowpea chlorotic
mottle virus

134.30 A;B;C Coat proteins 190
D;F RNA 4
E RNA 2

1a34 Satellite tobacco
mosaic virus

85.75 A Capsid protein 151
B RNA 10
C RNA 10

1zdh Bacteriophage MS2 132.7 A;B;C Coat protein 355
R; S RNA 19

1f8v Pariacoto virus 155.30 A;B;C Coat protein � 355
D;E;F Coat protein � 40
R RNA 25

Table 2
Spherical shell boundaries (with radii in units of d ¼ R0=12).

Capsid shell boundaries Genome shell boundaries

Virus External Internal External Internal

Cowpea Main ReðA;B;CÞ = 12 RiðA;B;CÞ = 9 ReðD;FÞ = 9 RiðD;FÞ = 8
Tobacco Main ReðAÞ = 12 RiðAÞ = 9 ReðB;CÞ = 9 RiðB;CÞ = 6

Protruded RpiðAÞ = 8
MS2 bacteriophage Main ReðA;B;CÞ = 12 RiðA;B;CÞ = 10 ReðR; SÞ = 10 RiðRÞ = 8, RiðSÞ = 9
Pariacoto Main ReðA;B;CÞ = 12 RiðA;B;CÞ = 9 ReðRÞ = 9 RiðRÞ = 7

ReðDÞ = 10 RiðDÞ = 9
ReðE;FÞ = 9 RiðE;FÞ = 8

Protruded RpeðA;B;CÞ = 13 RpiðA;B;CÞ = 8

Figure 1
The direct (upper part) and inverted (lower part) structures of the capsid
(on the left-hand side) with the coat proteins A (red), B (green), C (blue)
and of the genome (on the right-hand side) with the RNA chains D
(black), E (red), F (magenta) of the cowpea chlorotic mottle virus are
shown in a projection along the five-fold axis. The radii of the shell
boundaries are indicated in units of the radius R0 of the invariant sphere,
chosen equal to the size of the virus, enclosed in an ico-dodecahedron
with vertices indicated by black dots. Note that the internal boundary of
the capsid [at RiðA;B;CÞ = 9R0=12] coincides with the external one
ReðD;E;FÞ of the genome, whereas its internal one is RiðD;E;FÞ =
8R0=12. Only the invariant sphere is indicated together with the external
boundaries, not the internal ones.



values (not shown). Their length is much shorter than for the �
chain (40 residues instead of 355) and this hints at less order.

Taken as an isolated case, the unit width of the protruded

shells of the pariacoto capsid (Fig. 4) seems to be accidental. It

appears as non-accidental when one also considers the octa-

hedral cage of the sulfur oxygenase reductase SOR, where the

chimney-like protrusions also have a unit height, equal to that

of the cubic elementary cell of the form lattice [see Fig. 1(b) of

Janner (2008)].

3. Crystal spherical packing

The serotype differentiation of human rhinoviruses has been

shown to be related to the packing of these viruses in the

crystal (Janner, 2010b). The investigation revealed close

connections between properties of the individual virus and its

space-group symmetry. It is, therefore, natural to try to

describe the crystal packing in terms of the equidistant set of

spheres considered in the previous section.

It is agreeable to verify that what one expects is indeed

realised. In the four viruses considered, the spherical shell

structure, properly extended outside the virus, fits very well

with the crystal packing. This is shown in Fig. 5 for the MS2

bacteriophage (compare this figure with Fig. 5 of part IV) and

in Fig. 6 for the cowpea chlorotic mottle virus. The corre-

sponding figures of the satellite tobacco mosaic virus and of

the pariacoto virus (not shown here) are similar.

From these figures it follows that the parameters a; b; c of

the crystal lattice � can be expressed in units of the sphere

inter-spacing d. For example, for the MS2 virus one deduces

from Fig. 5 the relations

a ¼ 6u ¼ 26d; b ¼ 6v ¼ 26d; c ¼ 15w ¼ 60d; ð4Þ

where u; v;w are the parameters of the packing lattice �P, also

expressible in units of d,

u ¼ v ¼ ð13=3Þd; w ¼ 4d: ð5Þ

This type of correspondence is reported in Table 3 for all the

four viruses considered. From the table, one easily obtains the

ratios of the crystal lattice parameters which, because of their

rational value when expressed in units of d, imply that (in the

ideal case at least and, for the pariacoto virus, in the ortho-

rhombic approximation of its lattice �) the crystal lattices are

integral (Janner, 2004). The corresponding reduction of

independent structural parameters from the orthorhombic

a; b; c and the hexagonal a; c to the single d one is typical for

strongly correlated systems (Janner, 2005a,b,c). The compar-

ison with the experimental values follows directly from the

data specified in Table 3.
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Figure 3
The shell structure of the MS2 bacteriophage is shown in a similar way as
in the previous two figures. The shell boundaries of the coat proteins A
(red), B (green), C (blue) are at ReðA;B;CÞ = R0 and RiðA;B;CÞ =
10R0=12. Few loops protruding the internal boundary RiðA;B;CÞ,
without defining an own shell, interact with the RNA chains R (magenta),
S (black) with external radius ReðR; SÞ = RiðA;B;CÞ. The internal
boundaries of these two chains are different: RiðSÞ = 9R0=12 and RiðRÞ =
8R0=12.

Figure 2
The boundaries of the spherical shells of the satellite tobacco mosaic virus
are indicated in a similar way as in the previous figure. Now, the coat
protein A (red) forms two shells, a main one between ReðAÞ = R0 and
RiðAÞ = 9R0=12 and a protruded one between RiðAÞ and RpiðAÞ = 8R0=12.
The protruded shell overlaps the single RNA shell formed by the two
chains B (black), C (blue), both delimited by ReðB;CÞ = 9R0=12 and
RiðB;CÞ = R0=2.



4. Axial symmetric shells

In addition to the rotation group and the crystal space group

considered in the previous two sections, the third relevant

group is the icosahedral one with the corresponding two-fold,

three-fold and five-fold symmetry axes.

The 60 icosahedral equivalent chains are, accordingly,

partitioned into tetrameric, hexameric and decameric clusters

with orthorhombic, trigonal and pentagonal symmetry,

respectively.

In analogy with the spherical shells, one

expects that these clusters are enclosed in

axial shells, with boundaries at equidistant

cylindrical surfaces. Moreover, in order to

be consistent with the spherical shell

structure, the same unit distance d should

occur along and perpendicular to the axial

directions, with cylindric radii R and

height H obeying the relations

R ¼ kRd; H ¼ kHd;

kR; kH integers;
ð6Þ

where d = R0=12 as in equation (3).

A systematic verification of the validity

of this equation requires, for each chain

of the four viruses, 31 different cases
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Figure 4
The structure of the spherical shells in the pariacoto virus is plotted in a
similar way as in previous figures. The coat proteins A (red), B (green), C
(blue) form a main shell [between ReðA;B;CÞ = R0 and RiðA;B;CÞ =
9R0=12] and two protruded shells: an external one [with RpeðA;B;CÞ =
13R0=12] and an internal one [with RpiðA;B;CÞ = 8R0=12] which overlaps
the external part of the RNA chain R (black) [with ReðRÞ = 9R0=12]. The
internal shell boundary of the R chain is at RiðRÞ = 7R0=12.

Figure 5
The shell structure of the MS2 bacteriophage is compatible with the
packing of the virus in the crystal. Enhanced, by a thick black line, is the
invariant sphere with the radius R0 which corresponds to the size of the
virus and coincides with the external boundary of the shell belonging to
the coat proteins A (shown in green), B, C (not shown). The enclosing
boundary of the RNA chains R (magenta), S (black) is plotted in red.
Indicated are the rational relations between the parameters a, b, c of the
crystal lattice � and the parameters u, v, w of the packing lattice �P, also
expressed rationally in terms of the single inter-spherical distance d =
R0=12. Accordingly, � and �P are integral lattices.

Table 3
Crystal packing parameters.

Crystal lattice parameters a; b; c

PDB Virus Space group
Unit width
d = R0=12 (Å) In Å

In �P parameters
u; v;w

In d unit
width

1cwp Cowpea virus P212121 11.19 a 381.30 8u ð104=3Þd
b 381.30 8v ð104=3Þd
c 408.66 9w 39d

1a34 Tobacco virus I222 7.15 a 174.27 16u 24d
b 191.77 18v 27d
c 202.50 19w 22d

1zdh MS2 bacteriphage H32 11.06 a 288.00 6u 26d
b 288.00 8v 26d
c 653.00 15w 32d

1f8v Pariacoto virus P1211 12.94 a 329.33 12u 25d
(� = 90.93) b 346.94 13v 26d

c 424.89 16w 60d



according to the 15 tetrameric, the ten hexameric and the six

decameric clusters, respectively. This systematic investigation

has only been made for the A coat protein and the RNA chain

R of the pariacoto virus. The result is summarized in Tables 4,

5 and 6 in terms of the radial and axial k-values of the shells

with boundaries denoted by Re, Ri and He, Hi for the external

and internal radial and axial ones, respectively. The meaning

of ‘external’ and ‘internal’ in the radial plane is the natural

one, whereas He denotes the height along the axial direction of

the boundary furthest away from the equatorial plane, Hi

being that of the other limiting boundary of the same shell. In

Tables 4, 5 and 6 the additional intermediate boundaries Rpe,

Rpi and Hpe, Hpi, which, respectively, delimit main from

protruded segments of the coat proteins, are also given.

From this check for the observed axial shells one finds a

global validity only of equation (6). In particular, a question

mark indicates the cases where the assignment of specific kR

and kH values is not evident from the graphical plot.

One observes similar situations by sampling additional

chains in the pariacoto and in the other viruses. Three illus-

trative examples are shown: in Fig. 7 a three-fold hexamer of

the A;B;C chains in the satellite tobacco mosaic virus, in Fig. 8

a five-fold decamer of the A coat protein and of the RNA

chain R in the pariacoto virus, and in Fig. 9 a two-fold RNA

tetramer of these chains in the same virus. In all these figures

the coat proteins are plotted on the left-hand side and the

RNA chains on the right-hand side.

Finally, Fig. 10 demonstrates for the pariacoto virus the

compatibility of the axial tetrameric shells belonging to the

chains A, D, E, F and R, labeled as {5, 24, 51, 56}, with the

monoclinic (almost orthorhombic) crystal structure.

Concluding, the axial symmetric shells postulated in equa-

tion (6) represent a secondary feature only, even if compatible

with the spherical shells which can be considered as a domi-

nant structural phenomenon in the four viruses. Both types of

shells, properly extended outside the viral boundary, fit very

well with the crystal packing.
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Figure 6
Similar representation as in the previous figure of the shell structure of
the cowpea chlorotic mottle virus in relation to its crystal packing. The
parameters of the crystal lattice � are expressed in terms of those of the
packing lattice �P and related to the inter-spherical distance d = R0=12,
where now R0 is the radius of the cowpea chlorotic mottle virus. Again, �
and �P are integral lattices. Shown is a filling by the coat protein A
(green) and by the RNA chains D (black), E (red), F (blue).

Figure 7
Axial shell structure of the hexamer {5, 25, 45; 11, 31, 41} of the satellite
tobacco mosaic virus. Plotted are the chains of the coat protein A (on the
left-hand side, with the two trimers in red and in blue) and of the RNA
chains B (black) and C (blue) on the right-hand side, in a projection along
and perpendicular to the rotation three-fold axis. Indicated are the k
values of the various shells boundaries (colored lines) in units of the inter-
spacing distance d = R0=12 (in the rotation plane and along the axis,
respectively). The cylinder enclosing the virus has radius R0 = 12d and
height H0 = 2R0 (thick black line). For the protein A note the splitting
into a protruding shell [delimited by (4, 8) for kR and (6, 8) for kH ] and a
main shell [delimited by (8, 12) for kR and (1, 6) for kH ]. The two RNA
chains B, C are each enclosed in their own shell, delimited by (8, 5) and
(7, 4) for kR and by (6, 3) and (5, 2) for kH .



5. Towards a physical interpretation: the resonator
model

From the physical point of view, viral capsids exhibit a

remarkable robustness, characterized by extreme elastic

properties which ensure stability with respect to external

forces and to the internal pressure of a densely packed

genome. Experimentally, the mechanical properties of viral

shells have been investigated by scanning force microscopy

(Ivanovska et al., 2004; Evilevitch et al., 2011) and theoretically

by normal mode analysis (Tama & Brooks, 2005; Peeters &

Taormina, 2009; Klug et al., 2006), by molecular dynamics

calculations (Roos et al., 2010; Zink, 2009) and by applying

continuous elasticity theory (Bünemann, 2008). In the last two

publications (which are PhD theses) one can find an extended

list of references.

It is therefore natural to try to interpret the results

presented in this paper in terms of elastic properties of the

filled viral capsid. In doing so, the problem is to extract

dynamical features from a purely geometric and static

description of the viral structure.

The regular character of the shells described in terms of a

set of equidistant spheres and cylinders suggests considering

standing waves of eigenmode vibrations, in a capsid modeled
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Table 4
Pariacoto virus: two-fold axial symmetric shells.

Radii and heights are in units of d = R0=12.

Capsid coat protein A RNA chain R

Tetrameric clusters Rpe Re Ri Rpi Hpe He Hi Hpi Re Ri He Hi

{0, 32, 37, 46} 12 9 7 6 4 0 8 6 5 3
{1, 33, 38, 47} 12 9 7 5 4 0 8 6 6 3
{2, 34, 39, 48} 10 7 6 10 9 6 5 7 (?) 2 8 5
{3, 30, 35, 49} 6 2 1 13 12 9 8 3 0 9 (?) 7
{4, 31, 36, 45} 10 7 4 10 9 6 5 3 0 9 (?) 7
{5, 24, 51, 56} 11 9 6 (?) 10 7 3 8 6 5 3
{6, 20, 52, 57} 12 11 8 7 7 3 8 6 (?) 4 0
{7, 21, 53, 58} 13 12 7 7 4 0 9 6 4 0
{8, 22, 54, 59} 11 9 6 10 6 4 8 6 5 2
{9, 23, 50, 55} 13 (?) 9 8 3 2 �2 �3 9 (?) 7 3 (?) �3 (?)
{10, 15, 29, 43} 13 12 9 8 6 2 0 9 7 1 �1
{11, 16, 25, 44} 13 13 9 8 4 0 9 6 5 1
{12, 17, 26, 40} 8 7 4 11 8 6 7 3 7 5
{13, 18, 27, 41} 8 7 4 3 11 7 (?) 7 3 (?) 8 5
{14, 19, 28, 42} 13 12 9 7 5 2 0 8 6 5 2

Table 5
Pariacoto virus: three-fold axial symmetric shells.

Radii and heights are in units of d ¼ R0=12.

Capsid coat protein A RNA chain R

Hexameric clusters Rpe Re Ri Rpi Hpe He Hi Hpi Re Ri He Hi

{0, 9, 22; 32, 50, 59} 7 3 12 8 7 5 1 8 6
{1, 5, 23; 33, 51, 55} 7 4 0 12 11 7 8 5 1 9 6
{2, 6, 24; 34, 52, 56} 12 9 6 7 8 5 9 6 7 (?) 3
{3, 7, 20; 30, 53, 57} 13 9 8 4 2 �2 8 6 4 2
{4, 8, 21; 31, 54, 58} 12 8 7 7 6 2 (?) 8 5 7 3
{10, 26, 45; 15, 36, 40} 13 12 9 8 3 �1 8 7 2 �3
{11, 27, 46; 16, 37, 41} 11 9 5 10 7 3 8 5 6 3
{12, 28, 47; 17, 38, 42} 10 6 10 6 5 8 5 6 2
{13, 29, 48; 18, 39, 43} 13 12 9 8 2 0 �3 9 (?) 7 2 �3
{14, 25, 49; 19, 35, 44} 12 10 6 9 6 3 8 6 (?) 4 2

Table 6
Pariacoto virus: five-fold axial symmetric shells.

Radii and heights are in units of d = R0=12.

Capsid coat protein A RNA chain R

Decameric clusters Rpe Re Ri Rpi Hpe He Hi Hpi Re Ri He Hi

{0, 1, 2, 3, 4; 30, 31, 32, 33, 34} 11 7 4 10 8 5 5 3 8 7
{5, 17, 22, 41, 49; 12, 27, 35, 51, 59} 6 4 0 12 9 7 6 3 (?) 7 (?) 6
{6, 18, 23, 42, 45; 13, 28, 36, 52, 55} 11 8 6 8 7 4 8 5 6 2
{7, 19, 24, 43, 46; 14, 29, 37, 53, 56} 13 12 9 8 5 2 �2 9 7 2 �1
{8, 15, 20, 44, 47; 10, 25, 38, 54, 57} 13 12 9 8 5 1 0 9 7 2 �1
{9, 16, 21, 40, 48; 11, 26, 39, 50, 58} 12 11 8 7 7 4 2 8 5 6 2



as an elastic resonator, where the shells of the filled capsid

build a kind of Chladni pattern, similar to those obtained by

Ernst Chladni (1756–1827) from vibrating plates. In the

general case of a finite elastic body, these patterns reveal

vibrating eigenmodes which depend on boundary conditions.

For a virus in the spherical approximation adopted, these

conditions are those of the external (main) shell boundary of
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Figure 9
For the same pariacoto virus the shell structure of the coat protein A
(red) and of the RNA chains R (blue) belonging to the tetramer {5, 24,
51, 56} are shown in a similar way as in Fig. 8.

Figure 8
Plotted, in a similar way as in Fig. 7, are the axial shells formed by the five-
fold pair of pentamers {0, 1, 2, 3, 4; 30, 31, 32, 33, 34} of the coat protein A
(on the left-hand side) and of the RNA chain R (on the right-hand side)
of the pariacoto virus, drawn in red and blue, respectively.

Figure 10
Compatibility between the axial shell structure and the crystal packing of
the pariacoto virus in a projection along the crystal axis c and a,
respectively. Shown in each of the projected views are the shell
boundaries of the tetramer {5, 24, 51, 56}. Plotted in the bottom left are
the � coat protein A (red), in the top left the � coat proteins D (red), E
(black), F (blue), and in the right views the RNA chain R (black). The
various shell boundaries are also indicated in the two top right views.



the capsid with radius Re, which can be assumed to vibrate

freely.

According to this interpretation, the shells of the various

coat protein chains and of the RNA are delimited by anti-

nodal surfaces, which for standing waves are equidistant: this

implies, in particular, a wavelength � equal to the inter-spacing

distance d, of what can be denoted as a resonant K0 = 12-

mode. Nodal surfaces intercalate the anti-nodal ones. In this

resonator model of the capsid the central region of each shell

corresponds to the nodal surface of the resonant mode. It is in

these regions that one expects to find (within a reasonable

approximation) the centers of gravity of the chains, less

affected by the vibrating eigenmodes, because they are in the

nodal regions.

The shell boundaries of the four viruses have integral k

values, as indicated in Table 2 for the spherical shells, and, in

Tables 4, 5 and 6, integral kR and kH for the axial ones. It

follows that the corresponding k values of nodal surfaces

should be half-integers.

5.1. Vibrating spherical modes

The experimental situation observed for the spherical shells

(main and protruded) of all the chains involved (proteins and

RNA) is summarized in Table 7.

One finds indeed that the centers of the spherical shells of

the cowpea chlorotic mottle virus and of the satellite tobacco

mosaic virus are at nodal surfaces of the K0 = 12 radial mode.

This is also the case for the capsid shells of the pariacoto virus,

but not for its genomic shell. Apparently the R chains which

build the rigid dodecahedral RNA cage do not satisfy the

assumption of enclosing freely vibrating boundaries, as

required by anti-nodal surfaces.

In the case of the MS2 phage, only the boundaries of the

RNA chains S are consistent with a K0 = 12-mode. For all the

other A, B, C and R chains it is for a resonant K0 = 6-mode

with wavelength � = 2d that one finds nodal surfaces (at the

center of the spherical shells) with half-integer k-values.

5.2. Vibrating axial modes

As already remarked, the axial shells are less pronounced

than the spherical ones, as one can see by comparing Table 2

with Tables 4, 5 and 6 for the pariacoto

virus. Accordingly, a partial compatibility

only is expected between the shell bound-

aries and anti-nodal surfaces of vibrating

eigenmodes. As reported in Tables 8, 9 and

10 for the main shells of the coat protein A

of the pariacoto virus, this is what one

observes. One-third of the 62 different

boundaries, in the rotation planes and in

those perpendicular to the axis of the 31

axial clusters, do not have shell central

regions with a half-integer k value of

possible modes; the integral value found

has been indicated together with a question

mark. In general, those allowing an eigen-

mode interpretation are sub-harmonic of the fundamental K0

= 12-mode and have a wavelength � which is a multiple of d.

These results confirm the secondary character of the axial

modes with respect to the spherical ones.

The compatibility of the axial symmetric shells with the

crystal structure is illustrated in Fig. 10 by the example of the

{5, 24, 51, 56} tetrameric shells in the pariacoto virus by

equidistant cylinders, in a similar way as by the array of

equidistant spheres shown in Fig. 5 for the MS2 bacteriophage

and in Fig. 6 for the cowpea chlorotic mottle virus. In general,

the set of plane waves along the two-fold, three-fold and five-

fold symmetry axes appear to be related to the spherical waves

(with the same wavelength) as in diffraction phenomena.

5.3. Virus destruction by forced resonant oscillations

Capsid breaking and consequent viral destructions have

been obtained by an osmotic shock (Anderson, 1950;

Anderson et al., 1953; Cordova et al., 2003; Bünemann, 2008).

The existence of resonant vibration modes in the filled capsid

suggests breaking it and destructing the virus by forced reso-

nant oscillations as an interesting alternative approach. It is a

type of selective inactivation of viruses and bacteria which has

been realised by applying femtosecond laser pulses (Tsen et

al., 2007, 2008, 2010). For interpreting this inactivation, a

theoretical model of low-frequencies Raman spectra of

icosahedral virus capsids has been developed by Dykeman &

Sankey (2010). According to their calculations in the case of

the satellite tobacco mosaic virus the resonant frequency is

around 60–70 GHz. The present structural characterization of

four viruses should allow the resonant approach to be refined

and the selectivity of the method to be increased. Moreover,

from the intimate relation between the virus and its crystal,

one expects specific relations between the resonance

frequencies of both systems. This opens even more possibi-

lities in the fight against viral infections by purely physical

methods, which will become more and more important

because of the increasing viral resistivity against anti-viral

drugs.

In any case, further theoretical and experimental investi-

gations of these possibilities are justified.
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Table 7
Nodal spherical surfaces.

Capsid’s shell centers Genome’s shell centers

Main shells Protruded shells

Virus Chains ðRe þ RiÞ=2 ðRpe þ ReÞ=2 ðRpi þ RiÞ=2 Chains ðRe þ RiÞ=2

K0 = 12-modes (radii in units of d = R0=K0)
Cowpea A;B;C 10.5 D;F 8.5
Tobacco A 10.5 8.5 B;C 7.5
Pariacoto A;B;C 10.5 12.5 8.5 R 8.0

D 9.5
E;F 8.5

MS2 phage S 9.5

K0 = 6-mode (radii in units of 2d = R0=K0)
MS2 phage A;B;C 5.5 R 4.5



6. Final remarks

New structural results could be obtained by applying, for the

first time in virology, the inversion in a sphere. Most significant

is the scale invariance of the properties derived in this way,

properties which scale with the value of the radius R0 of the

invariant sphere. Of course, R0, a transformation parameter

only, does not represent an intrinsic property, which in fact

depends on the value of the external radius Re chosen to be

equal to R0 and considered as a measure of the viral size. This

size appears to be a few percent smaller than the radius of the

sphere enclosing the capsid adopted in previous publications.

In the four viruses considered, this value varies from 85 Å to

155 Å, as indicated in Table 2, but the size does not affect their

shared properties. The validity of a scaling principle has

already been pointed out for the pariacoto virus by Wardman

& Keef (2010); this poster is based on Keef et al. (2011) and

other publications mentioned in the Introduction. The simi-

larity of their work with the present one is due to the use of

lattice-like structures (Z-modules, mathematically speaking)

projected in space from six-dimensional lattices with icosa-

hedral symmetry. The main difference is that scaling relations

are obtained in the York approach of Twarock and her group

by affine extension, whereas, in my own approach, scaling

follows from non-Euclidean crystallographic transformations.

The geometrical shell model of the filled capsid and the

dynamical one of the virus as a resonator allow the char-

acterization of generic properties which suggest a common

physical (and possibly biochemical) interpretation.

First of all, one finds a fairly clear separation between the

globular quaternary structure of the coat proteins and a

peripheral one consisting of loops and chain terminals which

protrude the folded form. In terms of the shell model, one

distinguishes accordingly between main and protruding shells.

This characteristic morphology reflects the difference in the

rôle played by these structural elements. As one knows, typical

viral sites, like receptors, antigenic and binding sites are mostly

localized on such external, and usually variable, chain

segments, whereas the protruding elements directed towards

the viral center are responsible for the interaction between

capsid and genome.

The strong elastic properties of the capsid, required by the

protecting rôle of this envelope, depend on

the value of typical shell parameters, like the

width (Bünemann, 2008), which in the shell

model appears as the radial difference

Re � Ri of the external and the internal

boundary. In the genome, similar shell

regions delimit the ordered RNA parts which

fit with the overall icosahedral symmetry of

the virus, and whose atomic coordinates

could, therefore, be determined by X-ray

diffraction.

Concluding, the shell model adopted

reflects, in a natural way, typical viral prop-

erties.

One additional property of these shells,

that to have boundaries fitting with an

equidistant array of spherical surfaces and

cylindrical ones, leads to the resonator model

represented by an elastic sphere having its

own resonant modes of standing waves, with

anti-nodal surfaces fitting with the bound-

aries of the various shells. One finds that

the wavelengths of the eigenmodes are a

multiple of a fundamental one �0 equal to

the equidistant inter-spacing d, with d =

R0=12, where R0 is the radius of the invariant
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Table 10
Nodal axial surfaces of the pariacoto capsid: five-fold axial shells of the coat protein A.

Radii and heights are in units of � = R0=K0.

Clusters
Mode
K0 � ðRe þ RiÞ=2

Mode
K0 � ðHe þHiÞ=2

{0, 1, 2, 3, 4; 30, 31, 32, 33, 34} 12 d 9 (?) 12 d 7 (?)
{5, 17, 22, 41, 49; 12, 27, 35, 51, 59} 3 4d 0.5 4 3d 3.5
{6, 18, 23, 42, 45; 13, 28, 36, 52, 55} 12 d 9.5 12 d 5.5
{7, 19, 24, 43, 46; 14, 29, 37, 53, 56} 4 3d 3.5 6 2d 0 (?)
{8, 15, 20, 44, 47; 10, 25, 38, 54, 57} 4 3d 3.5 12 d 3 (?)
{9, 16, 21, 40, 48; 11, 26, 39, 50, 58} 12 d 9.5 12 d 5.5

Table 8
Nodal axial surfaces of the pariacoto capsid: two-fold axial shells of the
coat protein A.

Radii and heights are in units of � = R0=K0.

Clusters
Mode
K0 � ðRe þ RiÞ=2

Mode
K0 � ðHe þHiÞ=2

{0, 32, 37, 46} 4 3d 3.5 3 4d 0.5
{1, 33, 38, 47} 4 3d 3.5 3 4d 0.5
{2, 34, 39, 48} 12 d 8.5 4 3d 2.5
{3, 30, 35, 49} 6 2d 2 (?) 4 3d 3.5
{4, 31, 36, 45} 12 d 8.5 4 3d 2.5
{5, 24, 51, 56} 4 3d 2.5 12 d 8.5
{6, 20, 52, 57} 12 d 9.5 12 d 2 (?)
{7, 21, 53, 58} 12 d 9.5 12 d 5.5
{8, 22, 54, 59} 4 3d 2.5 6 2d 4 (?)
{9, 23, 50, 55} 12 d 11 (?) 6 2d 0 (?)
{10, 15, 29, 43} 4 3d 3.5 6 2d 0.5
{11, 16, 25, 44} 12 d 11 (?) 3 4d 0.5
{12, 17, 26, 40} 12 d 5.5 12 d 9.5
{13, 18, 27, 41} 12 d 5.5 12 d 9 (?)
{14, 19, 28, 42} 4 3d 3.5 6 2d 0.5

Table 9
Nodal axial surfaces of the pariacoto capsid: three-fold axial shells of the coat protein A.

Radii and heights are in units of � = R0=K0.

Clusters
Mode
K0 � ðRe þ RiÞ=2

Mode
K0 � ðHe þHiÞ=2

{0, 9, 22; 32, 50, 59} 12 d 5 (?) 3 4d 2.5
{1, 5, 23; 33, 51, 55} 12 d 5.5 12 d 9 (?)
{2, 6, 24; 34, 52, 56} 4 3d 3.5 12 d 6.5
{3, 7, 20; 30, 53, 57} 12 d 11 (?) 6 2d 0 (?)
{4, 8, 21; 31, 54, 58} 3 4d 2.5 6 2d 8 (?)
{10, 26, 45; 15, 36, 40} 4 3d 3.5 12 d 2 (?)
{11, 27, 46; 16, 37, 41} 12 d 7 (?) 12 d 8.5
{12, 28, 47; 17, 38, 42} 6 2d 4 (?) 6 2d 4 (?)
{13, 29, 48; 18, 39, 43} 4 3d 3.5 6 2d 0.5
{14, 25, 49; 19, 35, 44} 6 2d 4 (?) 4 3d 2.5



sphere and corresponds to the size of the virus. The origin of

the numeric value 12, observed in all four viruses, is unknown.

Here, it is accepted as empirically fact. Usually the detection

of eigenvibrations allows the matter distribution inside the

given sphere to be deduced. In the present approach the

converse idea is applied.

It is worthwhile being aware that the idea of viral destruc-

tion by forced resonant oscillations has not been simply taken

over from other investigations, like the pioneering ones of the

Tsens and co-workers, but it represents the follow up of a

series of purely geometrical studies of crystallographic prop-

erties of biomacromolecules. At present one can barely

imagine all possible consequences of the physical interpreta-

tion of these properties; the number of different biomacro-

molecules is too large.

APPENDIX A
Comments on obtaining the results

A1. Graphical fitting

The existence of equally spaced shells in the four RNA

viruses considered, which represents the main result of the

paper, has been obtained by a two-dimensional graphical

fitting between the images of the real structure (in the C�

backbone approximation of the proteins and in the P-back-

bone one of the RNA chains) and the geometry of an ideal

viral model. The question then arises whether this basic

property is not an artefact of the fitting procedure which has

been carried out by eye.

Let me first note that a change in precision of the fitting

procedure within reasonable limits only modifies the shell

parameters of the real structure (which anyway is only

approximately known) but not those of the ideal one.

The graphical procedure adopted in this paper (and in most

of the previous publications on biomacromolecules) for

obtaining a two-dimensional image from a three-dimensional

object is a projection and neither a section nor a stereo

diagram.

Projection is particularly suited to spherical objects. The

radius of the sphere is equal to the radius of its projected

circle. In the spherical approximation of an icosahedral virus,

one then directly read out in the projected image the radius of

the external enclosing form; not, however, that of an internal

spherical boundary. This is the reason why one first inverts the

virus and then projects it. Knowing the radius of the invariant

sphere (and this is easily done if one takes for it the external

boundary as explained above) one then deduces from the

projected inverted image the value of the internal radius.

Putting equal to 1 the radius of the invariant sphere, the

relation between the internal radius Ri and of that of the

projected image Rp is simply Ri = 1/Rp. This relation is inde-

pendent of the special choice mentioned above, where the

surface of the spherical virus is taken as invariant under the

inversion considered.

The situation is slightly different in the case of axial-

symmetric shells, which are claimed to be equally spaced

cylindrical surfaces, because the circular shell boundaries (the

only relevant ones for the resonator model) are invariant

under projection in the axial direction. Modified by this

projection are only the axial-symmetric set of the chains, as

indicated in Figs. 7–10.

The property used in these graphical fittings is that the

points which have an extremal radial distance from the axis

conserve this property in their two-dimensional image. The

validity of the periodic shell characterization (which involves

these extremal points) is directly visible from the images and

does not need further comments about its reality, which in the

biological structure is only an approximation and whose

relevance has still to be tested. The question marks appearing

in Tables 4, 5 and 6 concern deviations relevant only for the

interpretation of the shell boundaries as nodal and anti-nodal

regions in the resonant model.

A2. Inversive geometry

In the graphical fitting, use has been made for the various

viruses considered of the inversion in a sphere. The new

question is whether this procedure is universal and can be

applied to any virus.

Inversion in a sphere is indeed a universal procedure

belonging to the inversive geometry, which can be defined for

arbitrary dimensions and includes the Euclidean geometry as

a special case (with the centers of the spheres at infinity).

Euclidean repeated reflections on two parallel planes generate

translations. These correspond to scalings obtained by

combined inversions on two concentric invariant spheres.

Rotations are conserved under inversion, up to their orien-

tation (Coxeter, 1961), so that the point group symmetry (and

in particular the icosahedral symmetry) is conserved.

Not conserved under inversion are the non-spherical forms,

like the polyhedral and the polygonal forms. For example, the

icosahedron is not transformed into an icosahedron, as, in

general, plane facets are mapped into rounded ones.

Inversion can thus be applied to any virus. One can always

obtain as external an internal form. But, in order to correctly

interpret the form obtained, one has to know how the two are

related. This aspect is of particular importance if one applies

inversion to the Caspar–Klug viral characterization.

A3. Biology of periodic shell arrangements

The above considerations are intended to show that the

periodic shell arrangements are not artefacts of the fitting

procedure, but represent real facts, at least in the ideal case.

The following question is whether this construction, if not a

perfect description it, is still a good approximation of the

biology.

Shell structures in viruses have been observed and discussed

by quite a number of other investigators (see e.g. Bünemann,

2008), to begin with the separation between capsid and

genome. Periodicity is the new result which justifies the

publication of the present paper. The biological foundation for

such an arrangement depends on the interpreted physical

properties.
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In the resonator model, the assignment of nodal positions to

the approximate center of gravity of the chains, and of anti-

nodal positions to their boundaries minimizes the kinetic

energy of the vibrational modes. Indeed a large amplitude

movement there where one finds most of the mass distribution

would require more kinetic energy.

The paper only considers static structural properties and

not dynamical ones. This is the reason why the resonator

model adopted is based on a Chladni-like figure interpretation

of the observed chain distribution, allowing the gap between

statics and dynamics to be bridged. Limitations of this char-

acterization have to be taken into account. In particular,

Chladni figures of resonating plates are revealed by fine

powders, and are not obtained from chain-like elements as

considered in the present case. Therefore, deviations between

Chladni-like patterns and viral chain distributions (indicated

by question marks in Tables 4 to 6 and 8 to 10, and which only

concern axial-symmetric shells) are not a serious counter-

indication.

Suppose now that the resonant model is not the correct

interpretation of the chain periodicity. As an alternative, one

could argue that a spherical periodic arrangement of coat

proteins, involving successive chain parts with different bind-

ings, can ensure to the capsid stronger mechanical (elastic)

properties (which are extreme) in a similar way as in plywood.

The plywood model is more questionable for the RNA part,

and it is not so natural for the axial-symmetric shells.

In fact, only experimental investigations (which I hope

should start soon at the university of Nijmegen as well) will

allow the validity of a biological interpretation in terms of a

given physical model to be tested.

The relevance of forced oscillations leading to a capsid

instability has already been established by other research

groups. Independently of the resonator or of the plywood

model, knowledge of the intriguing structural features

presented should allow a better understanding of the viral

properties.
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